Q.P. Code: 16EE205

R16

i					
$\mathbf{D}_{\alpha\alpha} = \mathbf{N}_{\alpha\alpha}$					
KGQ NV.					
1105.110.					
Reg. No:					

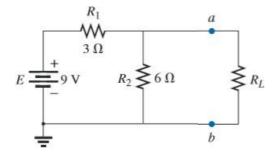
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech I Year II Semester Supplementary Examinations February-2022 NETWORK ANALYSIS

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

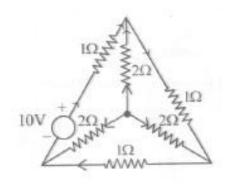

UNIT-I

1 a State and explain Superposition theorem?

b Find Norton's equivalent for the following circuit.

6M

6M


OR

a Define and state the properties of incidence matrix.

6M

b For the network shown below draw the graph and find incidence and tie – set matrices.

6M

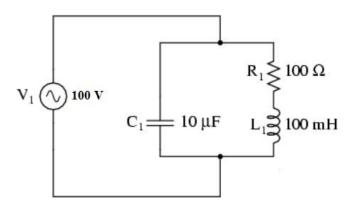
UNIT-II

a Explain about Natural & Forced Response of RLC Circuits.

6M

- **b** A resistor of 50Ω , inductance of 100mH and a capacitance of 100μ F are connected **6M** in series across 200V, 50Hz supply. Determine the following
 - (i) Impedance (ii) current flowing through the circuit (iii) power factor
 - (iv) voltage across R,L &C (v) power in watts

DR

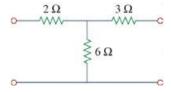

4 a Explain the characteristics of sinusoids.

6M

b The impedances of parallel circuit are Z1= (6+j8) ohms and Z2 = (8-j6) ohms. If the applied voltage is 120V, find (i) current and power factor of each branch (ii) overall current (iii) power consumed by each impedance. Draw the phasor diagram.

UNIT-III

- a Obtain the expression for resonant frequency, bandwidth and Q-factor for parallel 6M R-L-C circuit.
 - **b** In a parallel Resonant circuit shown in figure. (1), find the Resonant frequency, **6M** Dynamic Impedance, Bandwidth, Q-factor and Current at resonance?


OR

- a Discuss briefly about energy considerations in mutually coupled circuits. **6M**
 - **b** Obtain the expression for resonant frequency, bandwidth and Q-factor for Series R-**6M** L-C circuit.

UNIT-IV

a Find the Y- parameters for the following circuit:

6M

b Express h parameters in terms of ABCD parameters.

a What are the advantages of state variable analysis.

6M

6M

b The transfer function of a system is G(s)=2/(s+1)(s+2). Obtain a state variable **6M** representation for the system.

UNIT-V

a Design a constant K high pass filter and explain its design procedure in detail.

b Derive the expression for characteristic impedance in a pass band filter.

6M 6M

- 10 a What is an m-derived filter? Explain the general configuration and parameters of m-**6M** derived low pass filter.
 - **b** What is high pass filter. Explain the general configuration and parameters of a contant-K band pass filter:

*** END ***